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suggesting 65  % improvement in genetic gains. The sec-
ond objective was to evaluate effects of population struc-
ture on genomic prediction using cross-validation experi-
ments. When population structure exists in both training 
and validation sets, correcting for population structure led 
to a significant decrease in accuracy with genomic predic-
tion. In contrast, when prediction was limited to a specific 
subpopulation, population structure showed little effect on 
accuracy and within-subpopulation genetic variance domi-
nated predictions. Finally, effects of genomic heritability 
on genomic prediction were investigated. Accuracies with 
genomic prediction increased with genomic heritability in 
both training and validation sets, with the former showing a 
slightly greater impact. In summary, our results suggest that 
the population structure contribution to genomic prediction 
varies based on prediction strategies, and is also affected 
by the genetic architectures of traits and populations. In 
practical breeding, these conclusions may be helpful to bet-
ter understand and utilize the different genetic resources in 
genomic prediction.

Introduction

A central question in molecular breeding is to predict 
breeding values of elite breeding materials, which can be 
used to measure genetic merits of these materials for com-
plex traits in plant and animal breeding. A widely used 
approach is marker-assisted selection in which quanti-
tative trait loci (QTL) associated with traits of interest 
are first identified and then breeding values are predicted 
for the untested genotypes using a model including these 
QTL (Lande and Thompson 1990; Bernardo and Yu 2007; 
Jannink et  al. 2010; Nakaya and Isobe 2012). A major 
limitation of this strategy is the low power of identifying 
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small-effect QTL, which may jointly explain a consider-
able proportion of the genetic variation in quantitative traits 
(Jannink et  al. 2010). Often the over-estimation of QTL 
effects (Beavis 1994) causes another technical concern, 
namely the decreasing accuracy of predictions.

These challenges motivated developments of genomic 
prediction where genome-wide markers are simultaneously 
incorporated into a genomic model in an attempt to cap-
ture genetic variation from all the QTL associated with a 
quantitative trait (Meuwissen et al. 2001). Both simulations 
and empirical studies in recent years have demonstrated 
that, with genomic prediction, the prediction accuracy of 
breeding values can be increased and more genetic gain 
can be expected in plants (Piyasatian et al. 2007; Bernardo 
and Yu 2007; Lorenzana and Bernardo 2009; Zhong et al. 
2009; de los Campos et al. 2009; Crossa et al. 2010; Hef-
fner et al. 2011; Albrecht et al. 2011; Guo et al. 2012; Zhao 
et  al. 2012; Riedelsheimer et  al. 2012, 2013; de Oliveira 
et al. 2012; Windhausen et al. 2012; Guo et al. 2013; Tech-
now et al. 2013; Crossa et al. 2013), and animals (Legarra 
et al. 2008; Lee et al.2008; Luan et al. 2009; Hayes et al. 
2009; Moser et al. 2009; Rolf et al. 2010; Wolc et al. 2011; 
Mujibi et  al. 2011; Daetwyler et  al. 2012; Karoui et  al. 
2012; Kärkkäinen and Sillanpää 2012; Edriss et  al. 2013; 
Habier et al. 2013).

Population structure, as a property of a pedigree, is an 
important factor affecting predictions of breeding val-
ues with genomic models. Population structure may exist 
in random or pedigreed populations, owing to geography, 
natural selection or artificial selection (Yu et al. 2006; Price 
et al. 2010). Due to different allele frequencies among sub-
populations, population structure can produce spurious 
marker–trait associations in genome-wide association stud-
ies (Lander and Schork 1994; Pritchard and Donnelly 2001; 
Marchini et  al. 2004; Price et  al. 2010). Consequently, 
these false associations may inflate estimates of genomic 
heritability (Visscher et  al. 2012) and bias accuracies of 
genomic predictions (Makowsky et al. 2011; Riedelsheimer 
et al. 2012; Wray et al. 2013).

Several approaches have been developed to control for 
population structure in genomic prediction. One approach 
is to exploit the mean performances of subpopulations to 
account for population structure. With this approach, popu-
lation structure may be defined based on known breeding 
origins of lines (Legarra et al. 2008; Albrecht et al. 2011), 
the clusters derived from prior pedigrees (Saatchi et  al. 
2011) or molecular markers (Windhausen et  al. 2012). 
Another approach is to incorporate top principal compo-
nents from principal component analysis (PCA, Price et al. 
2006) as fixed effects into genomic models for correct-
ing for population structure (Yang et  al. 2010). However, 
adding these fixed variables into genomic models raises 
a concern of double-counting for population structure as 

these components are derived from a genomic relationship 
matrix which is already implicitly modeled in genomic 
models (Janss et  al. 2012). To address this issue, a solu-
tion was developed by utilizing a re-parameterization of the 
genomic best linear unbiased prediction (GBLUP) model 
(Meuwissen et  al. 2001), allowing a natural partition of 
genetic variation between across and within subpopula-
tion (Janss et  al. 2012). Given the successful partition of 
genetic variances in human and wheat studies (Janss et al. 
2012), further studies are needed to investigate and quan-
tify impacts of population structure on genomic prediction 
in breeding populations, aiming to provide useful insight to 
better understand and utilize different genetic resources in 
genomic prediction across crops.

Therefore, objectives in this study are threefold: (1) 
assess the influence of population structure on estimates 
of genomic heritability for economically important traits 
based on phenotypic and genotypic data from diversity 
panels in rice and maize using the reparameterized GBLUP 
model; (2) empirically evaluate the impact of population 
structure on the accuracy of genomic prediction using 
cross-validation experiments for the traits investigated on 
the above genomic model and (3) investigate effects of 
genomic heritability in training and validation samples on 
accuracies with genomic prediction. Our conclusions may 
aid recommendations for the utility of within- and across-
subpopulation genetic variances to increase genetic gains 
with different genomic selection strategies in stratified and 
pedigreed breeding populations.

Materials and methods

Two public data sets were used for genomic analysis in this 
study: (1) rice diversity panel (Zhao et  al. 2011), and (2) 
maize diversity panel (Cook et al. 2012).

Rice diversity panel

We used genotype and phenotype data of a rice diversity 
panel consisting of 413 inbred lines from 82 countries 
(Zhao et  al. 2011). The panel contained accessions from 
six subpopulations: indica (IND, 87), temperate japonica 
(TEJ, 96), tropical japonica (TRJ, 97), aus (AUS, 57), 
aromatic (ARO, 14), and admixed (ADM, 62). A 44-K 
chip [44,100 single nucleotide polymorphisms (SNP)] 
was used for genotyping each inbred in this panel. After 
filtering SNPs with low call rates (<70 %) and allele fre-
quencies (<0.01), a total of 36,901 high-performing SNP 
markers were retained for genetic analysis. These SNPs 
cover approximately 380 Mb of the genome at a density 
of about 1 SNP per 10 kb across the 12 chromosomes of 
rice. Each inbred from the diversity panel was evaluated 
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for important agronomic traits in Arkansas over 2  years 
from 2006 to 2007 with two replicates per year. In the 
current study, we used the phenotypic data from 30 traits 
impacting flowering time, plant morphology, yield com-
ponent, seed morphology, stress tolerance, and qual-
ity (Table  1), and phenotypic means of each inbred line 
across years and replicates were used for our data analysis 
for each trait.

Maize diversity panel

The maize diversity panel is another valuable pubic breed-
ing resource, which is composed of 282 maize inbred 
lines capturing a large proportion of the genetic diver-
sity in maize public breeding programs around the world 
(Flint-Garcia et  al. 2005). In the current study, we used 
genotype and phenotype data of 257 inbred lines from four 

Table 1   The posterior means 
and standard deviations of 
genomic heritabilities for each 
trait in the rice and maize panels

h2
gA, across-subpopulation 

genomic heritability; h2
gW, 

within-subpopulation genomic 
heritability; hg

2, genomic 
heritability; h2

QTL, proportion of 
phenotypic variance explained 
by QTL obtained from Zhao 
et al. (2011) in the rice panel
a  In parentheses is h2

gA/hg
2

b  In parentheses is h2
gW/hg

2

Panel Trait hgA
2a hgW

2b hg
2 h2

QTL

Rice Flowering time

 Flowering time at Arkansas 0.20 ± 0.02 (0.27) 0.54 ± 0.04 (0.73) 0.73 ± 0.04 0.26

 Flowering time at Faridpur 0.16 ± 0.03 (0.39) 0.26 ± 0.05 (0.61) 0.42 ± 0.05 0.05

 Flowering time at Aberdeen 0.03 ± 0.01 (0.04) 0.63 ± 0.06 (0.96) 0.66 ± 0.06 0.50

 FT ratio of Arkansas/Arberdeen 0.10 ± 0.02 (0.22) 0.39 ± 0.06 (0.83) 0.49 ± 0.06 0.39

 FT ratio of Faridpur/Arberdeen 0.07 ± 0.03 (0.17) 0.41 ± 0.07 (0.83) 0.48 ± 0.07 0.26

Morphology

 Culm habit 0.39 ± 0.02 (0.49) 0.39 ± 0.04 (0.51) 0.78 ± 0.03

 Flag leaf length 0.08 ± 0.02 (0.13) 0.56 ± 0.06 (0.87) 0.64 ± 0.06 0.15

 Flag leaf width 0.36 ± 0.02 (0.48) 0.38 ± 0.03 (0.50) 0.74 ± 0.03 0.24

Yield component

 Panicle number per plant 0.57 ± 0.02 (0.72) 0.22 ± 0.02 (0.28) 0.80 ± 0.02 0.08

 Plant height 0.32 ± 0.02 (0.39) 0.50 ± 0.03 (0.61) 0.81 ± 0.03 0.22

 Panicle length 0.33 ± 0.02 (0.45) 0.41 ± 0.04 (0.55) 0.73 ± 0.04 0.12

 Primary panicle branch number 0.26 ± 0.03 (0.42) 0.36 ± 0.05 (0.58) 0.62 ± 0.05 0.06

 Seed number per panicle 0.10 ± 0.03 (0.17) 0.50 ± 0.06 (0.83) 0.59 ± 0.06

 Florets per panicle 0.15 ± 0.03 (0.22) 0.54 ± 0.05 (0.77) 0.69 ± 0.05 0.15

 Panicle fertility 0.14 ± 0.02 (0.29) 0.51 ± 0.05 (0.86) 0.65 ± 0.05 0.07

Seed morphology

 Seed length 0.26 ± 0.01 (0.28) 0.65 ± 0.02 (0.72) 0.90 ± 0.02 0.38

 Seed width 0.39 ± 0.02 (0.43) 0.50 ± 0.02 (0.57) 0.89 ± 0.02 0.32

 Seed volume 0.30 ± 0.01 (0.33) 0.60 ± 0.02 (0.67) 0.90 ± 0.02 0.12

 Seed surface area 0.22 ± 0.01 (0.26) 0.68 ± 0.02 (0.74) 0.90 ± 0.02 0.08

 Brown rice seed length 0.31 ± 0.01 (0.34) 0.60 ± 0.02 (0.66) 0.91 ± 0.02 0.24

 Brown rice seed width 0.41 ± 0.02 (0.45) 0.49 ± 0.02 (0.55) 0.90 ± 0.02 0.21

 Brown rice surface area 0.24 ± 0.01 (0.24) 0.66 ± 0.02 (0.71) 0.90 ± 0.02 0.11

 Brown rice volume 0.30 ± 0.02 (0.34) 0.59 ± 0.02 (0.66) 0.89 ± 0.02 0.22

 Seed length/width ratio 0.34 ± 0.02 (0.38) 0.56 ± 0.02 (0.62) 0.90 ± 0.02 0.44

 Brown rice length/width ratio 0.36 ± 0.01 (0.39) 0.56 ± 0.02 (0.61) 0.92 ± 0.02 0.39

Stress tolerance

 Straighthead susceptibility 0.30 ± 0.03 (0.41) 0.43 ± 0.04 (0.59) 0.73 ± 0.04

 Blast resistance 0.29 ± 0.03 (0.40) 0.44 ± 0.04 (0.60) 0.73 ± 0.04 0.26

Quality

 Amylose content 0.41 ± 0.02 (0.49) 0.43 ± 0.03 (0.51) 0.85 ± 0.03 0.35

 Alkali spreading value 0.18 ± 0.02 (0.30) 0.41 ± 0.06 (0.70) 0.59 ± 0.06 0.30

 Protein content 0.09 ± 0.02 (0.18) 0.41 ± 0.06 (0.82) 0.50 ± 0.06 0.18

Maize Kernel composition

 Starch content 0.03 ± 0.01 (0.05) 0.51 ± 0.09 (0.95) 0.54 ± 0.09

 Protein content 0.02 ± 0.01 (0.03) 0.49 ± 0.08 (0.97) 0.51 ± 0.08

 Oil content 0.08 ± 0.02 (0.13) 0.54 ± 0.07 (0.87) 0.62 ± 0.08
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subpopulations: non-stiff stalk (NSS, 105), stiff stalk (SS, 
28), tropical/subtropical (TS, 63), and mixed (MIXED, 61) 
after excluding genetically distinct sweet-corn and popcorn 
lines (Cook et al. 2012). A total of 51,741 SNPs (50 K chip) 
were used to genotype each inbred line, and 48,814 SNPs 
were retained for analysis after filtering the SNPs with 
low call rate (<70 %) and allelic frequency (<0.01), cover-
ing about 2,058 Mb of the genome at a density of about 1 
SNP per 42 kb across the 10 chromosomes of maize. Each 
inbred from the diversity panel was planted and pheno-
typed for kernel composition traits starch, protein and oil 
content (Table 1) in seven locations: five locations (Clay-
ton, NC; Columbia, MO; Aurora, NY; Homestead, FL; and 
Ponce, PR) in 2006 and two locations (Columbia, MO; and 
Aurora, NY) in 2007. Phenotypic best linear unbiased pre-
dictors from each line across years and locations obtained 
from mixed model analysis (Cook et  al. 2012) were used 
for subsequent genetic analysis.

Models for estimation of genomic heritability and marker 
effects

In general, a GBLUP model may be used to estimate 
marker effects in genomic prediction based on genotypic 
and phenotypic data from a breeding population (Meuwis-
sen et al. 2001). In the GBLUP model

y is an n × 1 vector of phenotypic data with n lines; 1 is 
an n  ×  1 vector of ones; μ is the overall mean; X is an 
n × m marker genotype matrix with m the total number of 
markers; b is an m × 1 vector of marker effects; and e is 
an n ×  1 vector of residuals following a normal distribu-
tion N(0, Inσe

2) with 0 an n × 1 vector of zeros, In an n × n 
identity matrix, and σe

2 the residual variance. Marker effects 
b are assumed to be random effects following a normal dis-
tribution N(0, Imσb

2) with 0 an m × 1 vector of zeros, Im an 
m × m identity matrix, and σb

2 the common genetic variance 
for each of the m markers. The marker genotype matrix X 
is derived from observed marker information M according 
to VanRaden (2008) as

where M is an n × m matrix from n lines and m markers 
with each element from each column defined as −1, 0, and 
1 for the homozygous, heterozygous, and other homozy-
gous genotypes; pi is the frequency of the second allele at 
locus i, and P is an n × m matrix with 2(pi−0.5) for column 
i (i =  1, 2,…, m) representing the mean of genotypes for 
the corresponding column of M from the unselected base 
population.

Given model (1), the genetic value g of each line may be 
written as

(1)y = 1µ + Xb + e,

X = M − P

The genetic covariance matrix of g can be expressed as

where G is an n  ×  n symmetric, non-negative definite 
genomic relationship matrix, and σg

2 the total genetic 
variance of all the markers. Although the genomic 
relationship matrix G in GBLUP may implicitly cap-
ture genetic variation from population structure, fam-
ily structure, admixture, genetic differences between 
full sibs within a family, and genetic diversity between 
unrelated individuals (Makowsky et al. 2011; Janss et al. 
2012; Bastiaansen et al. 2012; Crossa et al. 2013; Habier 
et  al. 2013), it is difficult to directly use this model to 
differentiate and quantify the genetic variances from 
each of these components, respectively, without other 
well-developed simulation studies (i.e., see Habier et al. 
2013).

In this study, focusing on investigating impacts of pop-
ulation structure, we utilized a re-parameterization of the 
GBLUP which was first proposed by de los Campos et al. 
(2010) and then further developed by Janss et al. (2012) to 
partition the total genetic variation into across- and within-
subpopulation variances. After eigenvalue decomposition 
of G as

where U is an n ×  (n −  1) matrix of the eigenvectors of 
G with Ui the column i (i  =  1, 2, …, n  −  1) of U rep-
resenting the principal component loads, and D is an 
(n  −  1)  ×  (n  −  1) diagonal matrix with each diago-
nal element representing eigenvalues λ1, λ2, …, λn  −  1 
(λ1 > λ2 > … > λn − 1) of G, model (1) can be reparameter-
ized as

In (2) α is an (n  −  1)  ×  1 vector of random effects, 
each having a normal distribution N(0, Dσg

2) with 0 an 
(n  −  1)  ×  1 matrix of zeros. This model with the prin-
cipal components as random variables is shown to gener-
ate the same distribution as that of model (1) with markers 
as variables. In comparison with model (1), the advantage 
of model (2) is to allow a natural separation of across-
subpopulation genetic variance σ2

gA caused by population 
structure, and within-subpopulation genetic variance σ2

gW 
from σg

2 as

g = 1µ + Xb.

Var(g) = XXTσ 2
b =

XXT

∑m
i=1 2pi(1 − pi)

σ 2
g = Gσ 2

g

G = UDUT

(2)y = 1µ + Uα + e.

σ 2
gA =

1

n − 1

d∑

i=1

α2
i
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and

where d is the number of dominant principal components 
used to account for population structure that are independ-
ent of the trait of interest. The total genetic variance is

Accordingly, the genomic heritabilities for across-
subpopulation (h2

gA), within-subpopulation (h2
gW), and the 

whole population (hg
2) can be written as

and

Note that the above equations are derived in greater 
detail in Janss et al. (2012).

The above reparameterized GBLUP model was used to 
evaluate impacts of population structure on genomic her-
itability which was the first objective in this study. The 
unknown parameters μ, α, σ2

gA, σ2
gW, σg

2, σe
2, h2

gA, h2
gW, hg

2 
were estimated by Markov Chain Monte Carlo (MCMC) 
using a Gibbs sampler as proposed by de los Campos et al. 
(2010) and Janss et  al. (2012) for each trait using pheno-
typic and genotypic data from all individuals in the rice or 
maize population. A total of 25,000 MCMC iterations were 
run with the first 5,000 iterations discarded for burn-in. The 
remaining 20,000 iterations were used to estimate means 
and standard deviations of these parameters.

The second objective in the current study was to evaluate 
effects of population structure on genomic prediction using 
cross-validations described later. This required estimations 
of effects for each marker with GBLUP model (1) based 
on a training data set, which was a subset of the rice or 
maize population. To achieve this goal, effects of principal 
components α were first estimated with model (2) based on 
phenotypic and genotypic information in the training sam-
ple, and marker effects b in model (1) were then estimated 
using

σ 2
gW =

1

n − 1

n−1∑

i=d+1

α2
i

σ 2
g =

1

n − 1

n−1∑

i=1

α2
i .

h2
gA =

σ 2
gA

σ 2
g + σ 2

e

,

h2
gW =

σ 2
gW

σ 2
g + σ 2

e

,

h2
g =

σ 2
g

σ 2
g + σ 2

e

.

In order to account for population structure for estima-
tion of marker effects, the second model GBLUP with cor-
rection for population structure (GBLUP-CPS) was also 
used and directly compared with GBLUP. With GBLUP-
CPS, given the α vector estimated from model (2), the first 
d elements, effects of the top d principal components, were 
set to zero in an attempt to eliminate effects of population 
structure on estimating marker effects using Eq. (3). In the 
current study, differences in prediction accuracy between 
GBLUP and GBLUP-CPS were used to quantify the influ-
ences of population structure on genomic prediction.

Cross‑validation and prediction accuracy

Cross-validation methods were used to estimate predic-
tion accuracies with GBLUP and GBLUP-CPS models. We 
tested two cross-validation methods CV1 and CV2, mim-
icking different prediction strategies in practical breeding.

CV1 is a stratified fivefold cross-validation design con-
ditional on known population structure (Albrecht et  al. 
2011). With CV1, all the individuals within each subpopu-
lation were partitioned into mutually exclusive datasets W1, 
W2, W3, W4, and W5 with the similar sample sizes (Supple-
mentary Figure S1A). Though this subdivision was spe-
cific to the subpopulation, the same categorical labeling 
for partition was used across all subpopulations. Following 
individuals that fell into the same category were combined 
across all the subpopulations to build five subsets: S1, S2, 
S3, S4, and S5. For example, S1 consisted of the individu-
als labeled W1 across all subpopulations. Four of the five 
subsets were used to build a training data set for estimating 
marker effects using models described in previous sections. 
One subset was used in turn as a validation data set to esti-
mate prediction accuracy which was measured as the cor-
relation between predicted and observed phenotypes in the 
sample. Additional details for estimating prediction accu-
racy are discussed later. The CV1 strategy was intended to 
assess the prediction strategy in which training and valida-
tion samples contained similar patterns of population strati-
fication. This could occur if training and validation sam-
ples were sampled from a stratified population (Wray et al. 
2013).

CV2 focuses on predicting performances of individu-
als within a subpopulation. Three prediction schemes 
were used in terms of assembly of training samples. The 
first scheme, within-subpopulation prediction (WP), was a 
typical fivefold cross-validation design based on the sub-
division of W1, W2, W3, W4, and W5 within a specific sub-
population obtained from CV1. Each of W1–W5 data sets 

(3)b =
XTUD−1

α∑m
i=1 2pi(1 − pi)

.
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was tested as a validation sample in turn with the remaining 
data sets within the subpopulation combined to build the 
training sample (Supplementary Figure S1B). Prediction 
accuracy was then calculated as the correlation between 
predicted and observed phenotype in the validation sample. 
In comparison to CV1, both training and validation sets in 
WP were from the same subpopulation, with no across-
subpopulation information included.

The second scheme in CV2 was across-subpopulation 
prediction (AP), where all individuals from other subpopu-
lations were used to build training samples to predict per-
formances of individuals from the same validation set with 
WP. For example, if W5 in the maize tropical-subtropical 
(TS) subpopulation was used as a validation sample, then 
the training sample would consist of all the non-TS indi-
viduals in the panel (Supplementary Figure S1B). For com-
parison, we also performed AP for the whole test subpopu-
lation (APW), rather than a specific fold within it. In the 
previous example, this could mean using all non-TS as a 
training sample to predict all TS individuals (Supplemen-
tary Figure S1C).

The third scheme in CV2 was combined prediction (CP), 
where the validation set was onefold of one subpopulation: 
e.g., W5 in the maize TS subpopulation, and training set 
were all the remaining individuals in the panel, a combina-
tion of training samples from WP and AP (Supplementary 
Figure S1B). The population structure was retained in the 
training samples, and its impact was evaluated on genomic 
prediction, similar to CV1. In summary, except for APW, 
WP, AP and CP all predicted onefold of one subpopulation 
(Supplementary Figure S1B), allowing us to determine the 
optimal scheme for predictions. We excluded validations 
for subpopulations with sample sizes lower than 60 in the 
rice and maize populations to avoid large sampling errors.

A key difference between CV1 and CV2 is that popula-
tion structure is present in validation samples in CV1, but 
not in CV2. In practical breeding, a predicted population 
could be either type of validation sample, depending on 
specific breeding goals and stages. However, given differ-
ences between both approaches, we still wanted to explore 
the relationship between CV1 and CV2. Particularly, we 
were interested in comparing the performance of GBLUP-
CPS in CV1 with the mean performance of WP across all 
subpopulations in CV2, both of which utilized the within-
subpopulation genetic variance, a major genetic resource 
driving genomic prediction in practical breeding.

A total of 100 replicates were performed for the fivefold 
cross-validations in the CV1 and CV2 strategies, resulting 
in 500 estimates of prediction accuracies. At each fold in 
each replicate, the prediction accuracy was measured as 
the correlation coefficient between observed phenotypes of 
individuals in the validation set and their breeding values 
predicted by

where ŷi is the estimated breeding value of individual i in 
the validation sample; µ̂ and b̂j are the overall mean and 
marker effects estimated from a training sample using 
GBLUP and GBLUP-CPS; and Xij is the genotype of 
marker j for line i in the validation set. The final reported 
prediction accuracy was in fact the mean of the 500 pre-
dictions generated across replicate runs. Overall accura-
cies between various models and approaches tested in the 
study were compared using a pairwise t test (α = 0.05) in 
CV1 and CV2, respectively. Gains or losses in prediction 
accuracy with one model (e.g., model A) over another (e.g., 
model B) were calculated using (RA − RB)/RB, where RA 
represents prediction accuracy with model A, and RB pre-
diction accuracy with model B.

Detection of population structure using top principal 
components

One important requirement of the above genomic models 
was determining the number of top principal components 
used to capture population structure in the rice and maize 
diversity panels. In this study, the decision was made 
mainly based on PCA using genome-wide markers and 
prior genetic information. Furthermore, in order to inter-
pret the variation of each principal component, one-way 
ANOVA analysis was performed with principal compo-
nents as dependent variables and known subpopulation as 
a categorical explanatory variable (Patterson et  al. 2006). 
Results from this analysis were also used to support the 
determination of top principal components.

Results

Figure 1 showed the inference of population structure using 
the top principal components obtained from PCA. First, 
based on the relative contribution to global molecular vari-
ance, the top four principal components from PCA were 
chosen to represent the population structure in the rice pop-
ulation (Fig. 1a). These components with individual contri-
butions ranging from 2 to 41 % jointly explained 58.7 % 
of global molecular variance, close to the estimate of Fst 
of 0.56 using genome-wide SNPs. Inspection of these top 
principal components revealed further information about 
the population structure. In Fig. 1b, the first principal com-
ponent (on the abscissa) played a key role in separating 
japonica and indica (IND). ARO was clustered between 
them, but closer to japonica, while AUS showed significant 
overlap with IND. These observations were in agreement 

ŷi = µ̂ +

m∑

j=1

Xijb̂j,
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with the results from Supplementary Figure S2A obtained 
from one-way ANOVA analysis, where a large difference 
of the group means was found between TEJ and IND and 
relatively small difference was seen between IND and 
AUS or between TRJ and TEJ. The second principal com-
ponent (on the ordinate) tended to capture the variation 
between IND and AUS, showing a high level of differentia-
tion in the subpopulation means in Supplementary Figure 
S2B. With both axes, Fig.  1b provided a clear separation 
among japonica (TEJ and TRJ), IND and AUS, with ADM 

dispersed between these groups. TEJ and TRJ are geneti-
cally close and were grouped together on the right side of 
the plot. ARO was differentiated from others, but showed 
a close relationship to japonica. This separation was more 
clearly demonstrated in Fig. 1c, mainly due to the variation 
from the fourth principal component (on the ordinate) cap-
turing the major difference between ARO and others, which 
was similarly reflected in Supplementary Figure S2D. In 
contrast, the abscissa in this figure was mainly used to sep-
arate TEJ and TRJ in japonica. These results were in agree-
ment with the previous genetic studies about the population 
structure in rice (Garris et al. 2005; Zhao et al. 2011).

The differentiation of population structure using top 
principal components in the maize germplasm is shown in 
Fig. 2. The top two principal components were chosen to 
capture the population structure, explaining 5.9 and 3.7 %, 
respectively, of global molecular variance. In Fig.  2b, the 
first principal component (on the abscissa) tended to group 
TS and NSS to the right and SS to the left, while the second 
principal component (on the ordinate) tended to group SS 
and TS towards the top and NSS near the bottom. The dif-
ferentiation of these subpopulations was further supported 

Fig. 1   Population structure derived from the top principal compo-
nents from PCA in the rice diversity panel. a Proportion of molecular 
variance explained by each of top 20 principal components; b the first 
principal component (PC1) versus the second principal component 
(PC2); c the third principal component (PC3) versus the fourth prin-
cipal component (PC4). IND, indica; TEJ, temperate japonica; TRJ, 
tropical japonica; AUS, aus; ARO, aromatic; ADM, admixed

Fig. 2   Population structure derived from the top principal com-
ponents from PCA in the maize diversity panel. a Proportion of 
molecular variance explained by each of top 20 principal com-
ponents; b the first principal component (PC1) versus the second 
principal component (PC2). NSS, non-stiff stalk; SS, stiff stalk; TS, 
tropical/subtropical; MIXED, mixed
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by results from one-way ANOVA on the basis of each 
axis (Supplementary Figure S3). Based on the plot with 
both axes, three genetically different groups NSS, SS and 
TS were separated, but the differentiation between these 
groups showed a cline. This differed from discrete clusters 
shown in the rice panel, likely caused by an increased level 
of gene flow between these groups in maize (Garris et al. 
2005). Similar to the rice result, the MIXED group was dis-
persed among three major groups SS, NSS and TS, but with 
a closer relationship to TS and NSS, which was in agree-
ment with Flint-Garcia et al. (2005). It should be noted that 
the public diversity panel was originally collected to inves-
tigate the genetic architecture of traits, and then the genetic 
differentiation could be less than that in commercial elite 
lines due to a long-term selection in the latter.

In both cases, although the overall proportions of molecu-
lar variation explained by the top principal components were 
close to or even greater than those reported in the previous 
studies (Garris et  al. 2005; Flint-Garcia et  al. 2005; Zhao 
et  al. 2011), more investigations were performed to exam-
ine if adding other principal components improved the dif-
ferentiation of subpopulations. This analysis was particularly 
important for the maize population where Fst was actually 
estimated at 0.14, higher than the joint contribution of 0.10 
from top two principal components, suggesting the need of 
adding other components. Compared to the significance of 
the ANOVA p value for each principal component in Sup-
plementary Figures S2 and S3, the p value became insignifi-
cant from the fifth principal component in the rice popula-
tion and the third in the maize population (data not shown). 
These results served as further evidence to support our deci-
sion. Therefore, the number of principal components d used 
in genomic model (2) was determined to be 4 and 2 in subse-
quent analysis for rice and maize, respectively.

The next objective was to assess impacts of population 
structure represented by these top principal components on 
inferences of genomic heritability based on the entire diver-
sity panel in rice and maize. Table  1 showed estimates of 
genomic heritabilities for different traits based on the par-
tition of genetic variance in both populations (Supplemen-
tary Table S1). In the rice panel, estimates of hg

2, h2
gA, and 

h2
gW showed a high level of variability across traits, mainly 

attributed to the different genetic architectures. Across all 
traits, estimates averaged 0.74, 0.26, and 0.48 for hg

2, h2
gA, 

and h2
gW, respectively. The mean proportion of h2

gA over hg
2 

reached 33  % with the remaining 67  % accounted for by 
h2

gW. Across three kernel composition traits, the estimates of 
hg

2, h2
gA, and h2

gW averaged 0.56, 0.04, and 0.52 in maize. The 
mean proportion of h2

gA over hg
2 was 7.5  %, relatively less 

than that in rice. Moreover, the estimate of h2
gA was compa-

rable to R2 obtained from one-way ANOVA with subpopu-
lations as a categorical explanatory variable for phenotypes 
of each trait (Supplementary Figure S4), indicating a good 

representation of the population structure using the top prin-
cipal components chosen. Overall, these results suggested 
that, although population structure showed a significant 
impact on genomic heritability, within-subpopulation varia-
tion remains a major resource of genetic variance.

Following estimates of genomic heritabilities were com-
pared to that due to QTL identified from genome-wide 
association studies (Table 1). h2

QTL, the proportion of phe-
notypic variation explained by all QTL identified for each 
trait using genome-wide association study in the rice popu-
lation (Zhao et al. 2011), was lower than or comparable to 
the estimates of hg

2 and h2
gW. Across all traits, the average 

h2
QTL was estimated at 0.23, 69 and 54 % less than that of 

hg
2 and h2

gW, respectively. Large difference was attribut-
able to genetic variances of small-effect QTL which could 
not be detected by association analysis, but captured by 
genomic models. This point was more clearly shown in 
the maize population. Although there was no QTL identi-
fied for starch, protein and oil contents using genome-wide 
association study (Cook et  al. 2012), genomic heritability 
was still estimated to be over 0.50 for hg

2 or h2
gW, reflect-

ing the polygenic architecture of these traits. Given these 
results, we further estimated genetic gains for the traits 
tested, according to g = ihσg, where g represented genetic 
gain, i represented selection intensity, h represented the 
square root of heritability, and σg the standard deviation of 
genetic variance (Falconer and Mackay 1996). Given the 
fixed parameter i and genetic variation σg, genetic gain was 
mainly determined by the estimate of heritability. In the 
rice population, the improvement in genetic gain with hgW 
over hQTL averaged 65 % across the traits tested. The simi-
lar advantage was seen in the maize case where the genetic 
gain with QTL was little as there were few QTL identified 
in the previous study (Cook et al. 2012).

Influences of population structure on accuracies of 
genomic prediction were assessed with two models GBLUP 
and GBLUP-CPS in CV1. Results from the rice and maize 
analysis are shown in Table  2. In the rice population, 
GBLUP-CPS provided significantly lower accuracy than 
GBLUP for all traits except for flowering time at Aberdeen. 
Decreases in accuracy ranged from 0 to 62 %, depending on 
the trait. Across all traits, accuracies with GBLUP-CPS aver-
aged 0.47, 31 % lower than that with GBLUP. Similar trends 
were observed in maize, but the extent of reduction in accu-
racy was less than that in rice. The decrease in accuracy was 
attributed to the correction for population structure, suggest-
ing a significant impact of population structure on genomic 
prediction. However, even with the reduction, accuracy with 
GBLUP-CPS reached 69 and 86 % of that with GBLUP for 
rice and maize, respectively, indicating the dominating role 
of within-subpopulation genetic variance in CV1.

Given the above results in CV1, the effect of popula-
tion structure was further evaluated in CV2. Accuracies of 
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predictions with CV2 for each subpopulation are shown 
in Table  3. Prediction accuracy in each cell in this table 
was the average of prediction accuracies over all traits 
for the rice and maize panels (Supplementary Table S2 
to S5), respectively. WP provided prediction accuracy 

comparable to that with CP, both of which gave accu-
racy greater than that with AP. As expected, APW pro-
vided prediction accuracies close to that with AP, due to 
small differences in validation samples with same training 
samples. In both populations, the difference in accuracy 
between GBLUP and GBLUP-CPS was tiny in AP and 
CP, indicating the little effect of population structure in 
these methods in CV2.

Estimates of genomic heritability in training and valida-
tion data sets on accuracies of genomic predictions were 
examined in rice due to a large number of traits tested in 
comparison to maize data (Fig. 3). Note that the genomic 
heritability and prediction used for each trait in this fig-
ure were actually the means of estimates across 100 rep-
licates of fivefold cross-validations. Because of the same 
cross-validation strategy applied for each trait, averages 
of genetic relationship between training and validation 
samples were same for all the traits tested in this study. 
Given this, across all traits, prediction with GBLUP in 
CV1 increased with hg

2 in training and validation data sets 
with correlation coefficients of 0.94 and 0.93, respec-
tively (Fig. 3a). Similar trends were seen for the relation-
ship between h2

gW and accuracies with GBLUP-CPS, but 
to a lower level of correlation (0.85 and 0.70) likely due 
to the correction for population structure (Fig.  3b). The 
impact of population structure on genomic prediction was 
more clearly shown in Fig. 3c, where the reduction in accu-
racy with GBLUP-CPS over GBLUP increased with h2

gA in 
training and validation sets. Due to the negative correlation 
observed in Fig. 3c, these losses decreased with increasing 
h2

gW (Fig. 3d). Overall, based on the results of CV1, predic-
tion accuracy increased with the estimate of genomic herit-
ability in both training and validation sets, with the former 
showing a slightly greater impact. A similar conclusion was 
drawn from the results of WP in CV2 (Supplementary Fig-
ure S5), suggesting that this result would not rely on spe-
cific cross-validation designs.

Finally, the connection between CV1 and CV2 was 
investigated. We wanted to test if the overall prediction 
with GBLUP-CPS in CV1 was close to the average accu-
racy with WP across subpopulations in CV2, both of which 
were driven by within-subpopulation genetic variance. 
Recall that only relatively large subpopulations with sam-
ple sizes greater than 60 were tested originally in CV2 to 
ensure meaningful predictions. In order to test this hypoth-
esis, even at the risk of increasing sampling error, this 
limitation was relaxed to 20, allowing conducting fivefold 
cross-validation with WP in each subpopulation (except 
for ARO). In our preliminary studies, due to missing phe-
notypic data, the actual sample size of ARO was even 
lower than 10 for some traits tested, generating very poor 
results with WP. The accuracy with GBLUP-CPS in CV1 
was generally close to the mean accuracy with WP across 

Table 2   The means and standard deviations of prediction accuracies 
with GBLUP and GBLUP-CPS models in CV1 for each trait in the 
rice and maize panels

* Indicates the accuracy with GBLUP-CPS differs significantly from 
that with GBLUP at α = 0.05

Panel Trait GBLUP GBLUP-CPS

Rice Flowering time

 Flowering time at Arkansas 0.66 ± 0.08 0.49* ± 0.09

 Flowering time at Faridpur 0.49 ± 0.10 0.30* ± 0.12

 Flowering time at Aberdeen 0.57 ± 0.09 0.57 ± 0.08

 FT ratio of Arkansas/Arberdeen 0.54 ± 0.09 0.46* ± 0.10

 FT ratio of Faridpur/Arberdeen 0.47 ± 0.10 0.41* ± 0.10

Morphology

 Culm habit 0.70 ± 0.06 0.33* ± 0.11

 Flag leaf length 0.50 ± 0.08 0.43* ± 0.08

 Flag leaf width 0.75 ± 0.05 0.48* ± 0.08

Yield component

 Panicle number per plant 0.82 ± 0.04 0.31* ± 0.12

 Plant height 0.75 ± 0.06 0.50* ± 0.08

 Panicle length 0.66 ± 0.06 0.34* ± 0.11

 Primary panicle branch number 0.63 ± 0.06 0.37* ± 0.11

 Seed number per panicle 0.57 ± 0.08 0.49* ± 0.08

 Florets per panicle 0.65 ± 0.07 0.53* ± 0.08

 Panicle fertility 0.54 ± 0.08 0.38* ± 0.11

Seed morphology

 Seed length 0.75 ± 0.05 0.57* ± 0.08

 Seed width 0.84 ± 0.04 0.55* ± 0.09

 Seed volume 0.81 ± 0.05 0.61* ± 0.08

 Seed surface area 0.78 ± 0.05 0.63* ± 0.08

 Brown rice seed length 0.79 ± 0.04 0.57* ± 0.08

 Brown rice seed width 0.84 ± 0.04 0.54* ± 0.09

 Brown rice surface area 0.77 ± 0.05 0.60* ± 0.08

 Brown rice volume 0.82 ± 0.04 0.62* ± 0.08

 Seed length/width ratio 0.80 ± 0.04 0.54* ± 0.09

 Brown rice length/width ratio 0.82 ± 0.04 0.56* ± 0.09

Stress tolerance

 Straighthead susceptibility 0.72 ± 0.05 0.48* ± 0.10

 Blast resistance 0.69 ± 0.06 0.43* ± 0.09

Quality

 Amylose content 0.80 ± 0.05 0.44* ± 0.13

 Alkali spreading value 0.51 ± 0.10 0.30* ± 0.14

 Protein content 0.44 ± 0.09 0.34* ± 0.10

Maize Kernel composition

 Starch content 0.34 ± 0.10 0.31* ± 0.11

 Protein content 0.29 ± 0.11 0.28* ± 0.11

 Oil content 0.42 ± 0.09 0.31* ± 0.10
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all subpopulations in rice and maize populations (Fig.  4). 
Although increasing differences were observed for a few 
traits, likely due to the influence of unbalanced and limited 
individuals and genetic architecture across subpopulations, 
the average difference across all traits was equal to or even 
<0.01 in the rice and maize populations.

Discussion

Population structure causes significant impact on the esti-
mation of genomic heritability, depending on populations 
and traits. It accounted for 58.7 % of global molecular vari-
ation in the rice population, much greater than 9.6 % in the 

Table 3   Average prediction accuracies of GBLUP and GBLUP-CPS models with WP, AP, APW, and CP for subpopulations in CV2 across all 
traits based on the rice and maize diversity panels

WP, within-subpopulation prediction; AP, across-subpopulation prediction; APW, across-subpopulation prediction for the whole test subpopula-
tion; CP, combined prediction; IND, indica; TRJ, tropical japonica; TEJ, temperate japonica; NSS, non-stiff stalk; TS, tropical/subtropical

Population Subpopulation WP AP APW CP

GBLUP GBLUP GBLUP-CPS GBLUP GBLUP-CPS GBLUP GBLUP-CPS

Rice IND 0.54 0.21 0.24 0.21 0.24 0.55 0.55

TRJ 0.49 0.28 0.26 0.28 0.27 0.50 0.50

TEJ 0.54 0.33 0.30 0.33 0.29 0.55 0.52

Maize NSS 0.26 0.03 0.04 0.03 0.04 0.22 0.23

TS 0.29 −0.07 −0.07 −0.07 −0.07 0.26 0.26

Fig. 3   Relationship between estimates of genomic heritability in 
training and validation sets and accuracies with genomic predictions 
for each trait in CV1. a Relationship between estimates of genomic 
heritability hg

2 in training and validation data sets and accuracies with 
GBLUP; b relationship between estimates of within-subpopulation 
genomic heritability h2

gW in training and validation data sets and accu-
racies with GBLUP-CPS; c relationship between estimates of across-
subpopulation genomic heritability h2

gA in training and validation 
data sets and reduction in accuracy with GBLUP-CPS over GBLUP; 

d relationship between estimates of within-subpopulation genomic 
heritability h2

gW in training and validation data sets and reduction in 
accuracy with GBLUP-CPS over GBLUP. Rtraining: correlation coeffi-
cient between genomic heritability in training sets and accuracy with 
genomic prediction (a, b) or reduction in accuracy with GBLUP-
CPS over GBLUP (c, d); Rvalidation: correlation coefficient between 
genomic heritability in validation sets and accuracy with genomic 
prediction (a, b) or reduction in accuracy with GBLUP-CPS over 
GBLUP (c, d)



759Theor Appl Genet (2014) 127:749–762	

1 3

maize population. The large difference could be caused by 
two major reasons (Garris et  al. 2005). First, less cross-
pollination in rice limits the gene flow between subpopu-
lations, leading to a higher level of genetic differentiation 
than that in maize. The second explanation appeals to the 
history of domestication of these crops. In comparison to 
the one putative domestication event in maize history, we 
currently posit two domestication events in rice, one each 
for the separation of indica and japonica from the ancestor 
species. Given the genetic differentiation based on marker 
data only, we further investigated trait-dependent genetic 
variance partitions. Population structure had a significant 
impact on the estimation of genomic heritability, but the 
magnitude of this effect was largely different and specific 
to the trait tested, mainly determined by the genetic archi-
tecture of the trait. It should be noted that, in practice, the 
impact of population structure is expected to be closer to 
that in the maize population, in comparison to the rice 
population which should not be common in actual breeding 
populations.

Although population structure showed a significant 
impact on estimations of genomic heritability, even reach-
ing a high level as shown in the rice population, the major-
ity of genomic heritability was contributed by within-
subpopulation genetic variance. More importantly, the 
estimate of within-subpopulation genomic heritability h2

gW 
was found to be greater than the h2

QTL derived from QTL 
detected by genome-wide association studies, improv-
ing genetic gain with 65 % on average. As expected, this 
advantage could be further increased when comparing 
h2

QTL with hg
2 as the latter was greater than h2

gW due to the 

inclusion of genetic variation caused by population struc-
ture. In practical breeding, selection is often based on mul-
tiple traits depending on goals of breeding programs. This 
requires not only the estimates of heritability for each trait, 
but also of genetic correlations between traits in order to 
build an appropriate selection index. Although more evalu-
ations on building such an index for multiple-trait selection 
are needed, the benefit of genomic models, likely differing 
from the results reported in the current study, should be 
expected in comparison with the QTL-based approach.

The utilization of across- and within-subpopulation 
genetic variances depends on breeding strategies. The 
breeding process in plants can be summarized in three steps 
(Bernardo and Yu 2007; Jonas and de Koning 2013). First, 
parents are chosen from elite breeding germplasm, and dif-
ferent families are generated by crossing them (Step 1). 
Then, the performance of progeny in each family is field 
tested, and superior lines are promoted for further evalua-
tion (Step 2). These advanced lines are re-evaluated across 
a large number of locations, and the best lines may be 
released for new varieties (Step 3). Note that lines from 
Step 3 may be used as parents in Step 1 for the next cycle 
of crossing and selection. More importantly, they can be 
used to build a pedigreed and diverse training population to 
predict the breeding values of the newly generated lines in 
Steps 2 and 3 for the next breeding cycle, saving expensive 
and time-consuming phenotyping efforts (Würschum et al. 
2013). This motivated the development of the CV1 method 
in this study. In CV1, similar patterns of population struc-
ture exist in training and validation data sets, and popula-
tion structure can serve as a positive contributor to benefit 

Fig. 4   Comparison of prediction accuracy with GBLUP-CPS in CV1 with the mean accuracy with WP across each subpopulation in CV2. a 
Rice; b maize. WP within-subpopulation prediction
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predictions of breeding values (Makowsky et al. 2011; Bas-
tiaansen et al. 2012; Crossa et al. 2013; Wray et al. 2013). 
As a result, we observed a consistently lower accuracy with 
GBLUP-CPS than GBLUP due to the correction for popu-
lation structure. This conclusion was in agreement with the 
decline observed in a maize diversity panel composed of 
285 dent lines (Riedelsheimer et  al. 2012). Moreover, the 
reduced prediction with GBLUP-CPS was found to reflect 
the average level of accuracy with WP in CV2 across all 
subpopulations. This was not surprising as both methods 
were driven only by within-subpopulation genetic variance. 
It should be noted that although both across- and within-
subpopulation genetic variances were utilized in CV1, the 
respective contribution of each for prediction significantly 
differed across populations and traits. Particularly, for the 
traits largely impacted by population structure, breeders 
need more caution because the population structure with 
the higher genetic merit could overcompensate newly gen-
erated breeding populations over time (Crossa et al. 2013).

In contrast, prediction in CV2 relies mainly on within-
subpopulation genetic information. In practice, CV2 can 
be deployed in a way similar to CV1, but with no popu-
lation structure in the predicted population. In this case, 
WP could be the main use for CV2, utilizing the within-
subpopulation genetic variation. However, a relevant ques-
tion concerns whether it is possible to improve accuracy by 
adding genetic information from other subpopulations. Our 
results indicated no consistent gains with CP over WP, sug-
gesting little benefit from using other subpopulations. This 
conclusion was further supported by the decreased accu-
racy from AP and APW. The poor prediction may be due 
to the genetic heterogeneity caused by differences in link-
age phases between QTL and markers (Riedelsheimer et al. 
2013). Interactions between QTL and genetic backgrounds 
could be another reason. Similar results were also found in 
mice (Legarra et al. 2008) and other experiments in maize 
(Zhao et al. 2011; Windhausen et al. 2012; Guo et al. 2013; 
Technow et  al. 2013; Crossa et  al. 2013). It was reported 
that CP improved accuracy by introducing genetic variation 
from other subpopulations and compensating for limited 
sample sizes (Riedelsheimer et al. 2013). However, benefits 
were insignificant in the CP approach tested in this study, 
likely attributable to different populations and traits used. 
Although population structure exists in training samples in 
AP and CP, it showed little impact on prediction in CV2.

While it has been shown that genomic relationship plays 
a key role in determining prediction accuracies (Habier 
et  al. 2007), our study suggested that prediction was also 
affected by genomic heritability in training and valida-
tion samples. First, we found accuracy increased with the 
genomic heritability in training samples, largely attributed 
to improved estimations of marker effects by introducing 
more genetic variation into those samples. A similar trend 

was seen in validation samples, where the higher heritabil-
ity means less environmental noise, an indication of more 
accurate prediction in these samples. Given these results 
being consistent with previous studies (Bernardo and Yu 
2007; Villumsen et  al. 2008; Guo et  al. 2012), our study 
also suggested that genomic heritability showed a slightly 
greater impact in training samples than in validation sam-
ples, highlighting the importance of increasing and main-
taining sufficient genetic variation in training populations 
in practical genomic selection. Given the consistent con-
clusions obtained from different cross-validation schemes 
tested in this study, we expect that this finding may be used 
as a general guidance in developing genomic selection 
breeding strategies. In addition, as expected, reductions in 
prediction accuracy due to the correction for population 
structure were seen to increase with across-subpopulation 
heritability. This was mainly contributed by the across-
subpopulation genetic variance caused by population struc-
ture. In practice, to avoid the decrease in prediction accu-
racy, one may consider making crosses using parental lines 
from genetically distant subpopulations for the traits highly 
affected by population structure.

Finally, it should be noted that the above conclusions 
are derived from additive genetic models using cross-vali-
dation. Although a high level of estimates of genomic her-
itability and predicted accuracy were achieved with these 
models, it is still worthwhile to explore the utilization of 
other genetic effects such as epistasis and genotype-by-
environment interactions. More studies will be needed in 
the future not only for the extension and modification of the 
current reparameterized GBLUP model to accommodate 
these effects, but also for the preparation and evaluation of 
the quality of data set which is suitable for these analyses. 
Furthermore, the accuracy obtained from this study was 
based on cross-validations using the inbred lines from the 
rice and maize populations. More studies are needed to 
evaluate the predicted accuracy for offspring derived from 
these inbred lines at different generations (Jonas and de 
Koning 2013). This requires the construction of a genotyp-
ing platform for both parents and offspring at each cycle of 
the breeding process. Nonetheless, results from this study 
are encouraging and meaningful to deepen our understand-
ing on the utilization of across- and within-subpopulation 
genetic variation for different traits and populations in dif-
ferent prediction and breeding strategies.
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